
RV’02 Preliminary Version

Combining Monitors for Runtime System
Verification

Joshua Levy and Hassen Säıdi and Tomás E. Uribe

System Design Laboratory
SRI International

Menlo Park, CA. 94025
{levy,saidi,uribe}@sdl.sri.com

Abstract

Runtime verification permits checking system properties that cannot be fully verified
off-line. This is particularly true when the system includes complex third-party
components, such as general-purpose operating systems and software libraries, and
when the properties of interest include security and performance. The challenge is
to find reliable ways to monitor these properties in realistic systems. In particular,
it is important to have assurance that violations will be reported when they actually
occur. For instance, a monitor may not detect a security violation if the violation
results from a series of system events that are not in its model.

We describe how combining runtime monitors for diverse features such as memory
management, security-related events, performance data, and higher-level temporal
properties can result in more effective runtime verification. After discussing some
basic notions for combining and relating monitors, we illustrate their application in
an intrusion-tolerant Web server architecture under development at SRI.

1 Introduction

Most computer systems cannot be completely verified before they are put in
service. The high complexity of complete fielded systems places them beyond
the reach of exhaustive formal analysis tools, such as model checkers and theo-
rem provers. Furthermore, many systems rely on third-party components, for
which a complete specification (or even source code) is not available. Finally,
the nature of most formal analysis tools requires that they check a model of the

1 This research is sponsored by DARPA under contract number N66001-00-C-8058. The
views herein are those of the authors and do not necessarily reflect the views of the sup-
porting agency.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Levy, Säıdi and Uribe

system rather than the system itself. If this model is inaccurate, important as-
pects of the actual system behavior can be overlooked. The specifications used
to certify a system may be incomplete, wrong, or make implicit assumptions
that are violated by the runtime environment.

Runtime verification addresses some of these problems by checking that the
actual system execution satisfies desired properties. Rather than checking that
all computations of (a model of) the system satisfy a property, as design-time
verification does, runtime verification checks that the particular computation
generated when the system is executed is correct, avoiding the state-space
explosion that limits the scalability of exhaustive verification tools.

However, important choices must still be made when analyzing the run-
time behavior of a system, including the level of abstraction at which the
runtime verification is performed, how detailed and comprehensive it is, and
what specifications or properties are expected to hold. For example, the com-
prehensiveness of the checks is often traded off against efficiency.

In many cases it is insufficient to monitor operation at a single level of
abstraction. Likewise, monitoring may not be restricted to a single component,
or to a single aspect of operation. The correct behavior of the monitoring
mechanism may depend on properties that must themselves be monitored
separately.

These concerns are particularly acute when the system is intended to main-
tain security properties. A hostile attacker can try to defeat or circumvent
the monitoring mechanisms themselves, and a successful attack may disable
the monitors intended to report it.

In this paper, we discuss and illustrate how runtime verification benefits
from the combination of multiple monitors at multiple levels of abstraction:

• The use of many specialized monitors results in greater awareness of events
in the system.

• By combining the information provided by the monitors, stronger properties
that relate different aspects of the system can be checked at runtime.

• The modularity arising from separate monitors facilitates the sharing and
reuse of monitoring information and mechanisms.

Outline: We present some preliminary definitions in Sections 2 and 3. Sec-
tion 4 describes our target application, an intrusion-tolerant server. Section 5
presents a set of examples where monitors are combined. Section 6 presents
conclusions, and related and future work.

2 Preliminaries

We are interested in checking runtime properties of distributed systems, which
may be composed of multiple machines, each running multiple processes, con-
nected by a network. While we do not attempt a full formalization of this task

114

Levy, Säıdi and Uribe

in this paper, below we describe some of the aspects that it should address.

System state: Informally, the system state is given by the union of the states
of all the machines, together with the state of the network.

For a particular machine, the system state can be described at various
levels of abstraction. At the hardware level, it is given by the state of the
processor, registers, and memory. At the OS level, it is the state of the OS
and the processes currently running. For a given process or thread, the (local)
state is given by the value of its program variables, execution stack, and
control location. The system variables should be sufficient to describe all of
the components and abstractions considered.

Definition 2.1 A system state is an assignment of values to a set of system
variables V .

Fixing the set of system variables is a modeling choice, and implies choosing
a certain minimum level of abstraction (such as CPU registers and memory
locations), but is useful in defining our terminology below.

Definition 2.2 A run r of the system is an infinite sequence of system states

r : s0, s1, s2, . . .

States and runs can be mapped to higher levels of abstraction, where
an abstract variable is defined in terms of a set of original concrete system
variables. This raises a number of issues, such as the problem of the scope
of the abstract variables [15]: in practice, the definition of the abstract state
will be local to a module, process, or subroutine. When the local process is
not running, the abstract values will be undefined. In general, the mapping
between abstract and concrete variables is not fixed (e.g., a program variable
refers to different memory locations from one run of the program to the next,
and other values can be dynamically bound).

Observability at different levels: Usually, when we focus on a particular
aspect of the system, only a subset of the system state is visible. For example,
an application might not know what the full OS state is, including what other
processes are running. The OS may know about all the running processes,
but may not have direct access to the internal state of a particular process.

Definition 2.3 (Local view) Given a system state s and a set of (possibly
abstract) variables L, we write s|L to indicate the assignment that s induces
in the variables in L, that is, the local view of the state. We allow for variables
in L to be undefined (e.g., at a state where they have not been initialized).

Time granularity: In general, a component or monitor can only observe
some of the system transitions, and may overlook transitions. Also, a transi-
tion at the software abstraction level may correspond to multiple steps at the
hardware level, and, furthermore, may be interrupted and resumed. For in-
stance, an application-level monitor will not know when an interrupt is called.

115

Levy, Säıdi and Uribe

For this reason, we can expect most of the properties being monitored to be
stuttering invariant [1].

Previous work has identified distinctions between process-level, statement-
level, and instruction-level monitoring [11]. Each presents different trade-offs
between overhead, implementation complexity, and precision. Our goal is to
allow monitors at all of these levels, as well as other more generally defined
abstraction levels.

3 Monitors

A monitor is a module that observes a given set of system variables at a
particular level of abstraction, gathers information about these variables, and
makes some of this information available to other monitors and components.
In particular, we expect monitors to report the violation of expected system
properties.

Definition 3.1 A property ϕ is a set of runs of the system. For a run r, we
say that r is a model of ϕ, and write r |= ϕ, if r ∈ ϕ. We write r |= ¬ϕ, or
equivalently r 6|= ϕ, if r 6∈ ϕ.

A common way of describing such properties is using linear-time temporal
logic (LTL) [16]. Properties can be classified as belonging to the safety or
liveness classes [2], where safety properties are those whose failure can be
detected by a finite prefix of the run. A monitor that halts and issues a
warning or alert is, by definition, checking a safety property. (On the other
hand, not all safety properties are monitorable [23].)

There are system properties that cannot be expressed as sets of runs,
including possibilistic and general branching-time temporal properties [3,6].
This includes a number of security properties, such as various formulations of
noninterference [25].

We will focus on the detection of property violations rather than property
enforcement [21].

Definition 3.2 A monitor M has a set of observable state variables VM and
a set of auxiliary variables OM , which are visible to outside modules. The
monitor operates by sampling the variables in VM and updating the variables
in OM , and raises an alarm when it considers that a violation has occurred.
Given a system run s0, s1, s2, . . ., the monitor sees a subsequence of states

si0 , si1 , si2 . . .

restricted to the variables VM , that is,

si0|VM
, si1|VM

, si2|VM
. . .

where 0 ≤ ij ≤ ij+1 for all j ≥ 0.

The auxiliary variables OM are assumed to be part of the global set of
system variables V .

116

Levy, Säıdi and Uribe

In practice, the variables in VM are best defined locally, rather than in
terms of global but low-level system variables. This is the case, for example,
when we annotate high-level code to check invariants.

We do not make any assumptions regarding what mechanism a monitor
M may use to observe the variables VM , or what internal state M may have.
Most monitors can be assumed to be finite-state, though software monitors can
have an unbounded stack (such as the pushdown automata used in [24]). A
simple example of a formally derived monitor is a finite-state automaton that
describes a temporal safety property at a particular level of system abstraction
[7], and is composed with the system through code annotation.

In practice, the power and reliability of monitors can vary.

Definition 3.3 (Monitor characteristics) We say that a monitor M is
complete with respect to a property ϕ if for any run r such that r 6|= ϕ, M
is guaranteed to raise an alarm. A monitor M is sound with respect to a
property ϕ if whenever M reports an alarm, then r 6|= ϕ (no false alarms).

An example of an incomplete monitor is one that can skip steps at the
chosen abstraction level, and thus miss states that violate the desired property.
Many intrusion detection systems are examples of incomplete and unsound
monitors: they can produce false alarms, and fail to report violations. Note
also that the property checked by a monitor may be implicit in the monitor
implementation, and not available in declarative form (such as a temporal
logic formula).

A monitor can be defeated if its execution is halted. Technically, the safety
property that the monitor is intended to check might not be violated, if the
execution steps that modify the observed variables are halted as well. This
is the case for monitors that check the internal consistency of applications
through source code annotations. We investigate this issue in more detail
below.

Assume-guarantee specifications: We can specify the properties of mon-
itors in an assume-guarantee fashion [1].

Definition 3.4 Given a system S, a monitor M and properties ϕ1 and ϕ2,
we write

[ϕ1] M [ϕ2]

to indicate that M is sound and complete with respect to ϕ2, when restricted
to runs that satisfy ϕ1, assuming that M is not disabled. That is, M is
guaranteed to soundly report a violation of ϕ2 for any run where ϕ1 holds.

Note the analogy to the partial correctness described by standard Hoare
triples, which are conditioned on the termination of the program. That M
can reliably monitor ϕ (“total correctness”) is thus decomposed into two prop-
erties: the first can be written as [true] M [ϕ], and includes soundness. The
second states that M cannot be disabled in a run of S.

117

Levy, Säıdi and Uribe

If we write [[M]] to indicate the set of runs for which the monitor M does
not raise an alarm, then [ϕ1] M [ϕ2] can be expressed as (ϕ1 ∩ [[M]]) ⊆ ϕ2.

Definition 3.5 (Monitor composition) If M1 and M2 are monitors in S,
we write M1 ⊕M2 to indicate the monitor that raises an alarm whenever M1

or M2 does so.

Informally, if M1 checks that property P holds, and M2 checks Q, then
M1⊕M2 checks P ∧Q: if the combined monitor does not raise an alarm, then
both P and Q hold. We also have

[[M1 ⊕M2]] = [[M1]] ∩ [[M2]] .

We can then write simple rules such as

[P1] M1 [Q1] , [P2] M2 [Q2]

[P1 ∧ P2] (M1 ⊕M2) [Q1 ∧Q2]

[P] M1 [ϕ] , [ϕ] M2 [Q]

[P] (M1 ⊕M2) [ϕ ∧Q]

and
[P1] M1 [Q1] , P → P1, Q1 → Q

[P] M1 [Q]

where general S-temporal validity is required of the antecedents [16]. In this
way, runtime and static verification can be combined.

The above rules are all instances of a single general rule:

[Ai] Mi [Gi] ;

(
∧

i(Ai → Gi)) → A → G

[A] (M1 ⊕ . . .⊕Mn) [G]

In the following section, we describe ways in which monitors can be tightly
combined in practice, by sharing information in addition to conjoining their
alarms.

3.1 Combining Monitors

As we have discussed, monitors can be embedded in application code, or in
the OS; they can be a separate process, or be composed of separate modules
that observe networks and interfaces.

The ⊕ composition operator described above means only that the various
monitor alarms are conjoined. In practice, monitors can share and exchange
other information. The modes of monitor combination that we consider are
shown schematically in Figure 1. An arrow from N to M indicates that the
observable variables of M include some of the auxiliary variables of N , that
is, ON ∩ VN is not empty. 2 In all cases, we assume that the monitor alarms

2 In general, circular information flows can occur, where both OM1 ∩VM2 and OM2 ∩VM1

are nonempty. However, it may be simpler to merge M1 and M2 into a more complex
monitor in this case.

118

Levy, Säıdi and Uribe

Complementary:
better coverage

Dependency:
work reuse, efficiency

Correlation:
stronger properties

Fig. 1. Combinations of monitors (information flow)

are conjoined. The combination modes depicted are:

• Complementary monitors: In this case, monitors M1 and M2 inde-
pendently check their properties. The net effect is to obtain the monitor
M1⊕M2 as described in the previous section. Note that even when the mon-
itors do not communicate at runtime, their design can exploit the fact that
other monitors are present. For instance, the correct behavior of M1 may
depend on assumptions that are checked by M2, as we will see in Section 5.

• Correlation: Given monitors M1 and M2, monitor M3 relates their activity
by including among its observable variables some of the auxiliary variables
of M1 and M2. This allows checking properties that are stronger than those
checked by M1 and M2 alone.

• Dependency: A special case of correlation, where a monitor checks prop-
erties that depend on information passed on by other monitors. This com-
bination can increase the efficiency of the overall monitoring subsystem,
allowing the reuse of potentially expensive monitored data.

4 Application: The DIT Server Architecture

Our motivation and sample application is the design and implementation of
an intrusion tolerant web server architecture [22]. The Dependable Intrusion
Tolerance (DIT) architecture is shown schematically in Figure 2. One or more
redundant tolerance proxies manage user requests, and forward them to a
redundant application server bank.

The goal of the DIT system is web content distribution with high in-
tegrity and availability, at reasonable cost. This is done by using low-cost
COTS software, with relatively low assurance, in a high-assurance intrusion-
tolerant design. The architecture is based on the observation that COTS web
server software is feature filled and complex, and tends to contain security
vulnerabilities. However, different programs and operating systems have dif-
ferent vulnerabilities, so a system with diverse web servers on diverse platforms
should provide greater assurance of availability and integrity, assuming a reli-
able mechanism for collecting responses from the redundant servers, validating
them, and forwarding them to the clients.

119

Levy, Säıdi and Uribe

Proxies
IDS

Leader

COTS Application Servers

Clients

Fig. 2. Schematic view of the intrusion-tolerant server architecture

Proxy
Server

Regime
Manager

Alert
Manager

Challenge-
Response

Application
Servers

IDS

Peer
Proxies

Clients

Fig. 3. High-level view of proxy implementation

This function is performed by the proxy, which resides on a hardened plat-
form running a small amount of custom code. The simplicity and customized
nature of the proxy software makes it more amenable to hardening than the
application servers. The proxy accepts client requests, forwards them to a
number of application servers, and compares the content returned by the ap-
plication servers. If enough agree, the proxy sends the corroborated answer
to the client.

An agreement regime determines which servers are queried by the proxy
for each client request, and how sufficient agreement is determined. For exam-
ple, a particular regime may specify that each request be forwarded to three
different application servers, randomly chosen, and that a simple majority is
required among the three replies before the result is sent back to the client.

The proxy and application servers communicate over a private network
that is monitored by an intrusion detection system (IDS). The agreement
regime changes over time as events such as disagreements and IDS alarms are
reported.

Figure 3 shows the main components of our proxy implementation. The
regime manager is responsible for executing the content agreement protocol,
described in Figure 4. The alert manager takes input from the IDS subsystem

120

Levy, Säıdi and Uribe

Start
Accept
request

Forward
request to
n servers

Identify
suspicious

servers

Send
response
to client

Ask more
servers

Service
unavailable

invalid request

valid

sufficient
agreement

insufficient
agreement

insufficient
agreement

sufficient
agreement

limit
reached

Fig. 4. Generic content agreement protocol

and the challenge-reponse protocols, and notifies the regime manager when
changes are warranted.

A challenge-response protocol is constantly executed as an additional in-
tegrity check. It provides a relatively high-latency check on the integrity of
files and directories on the proxies and servers, by periodically issuing a chal-
lenge that must be answered by computing a one-way function of the challenge
and the given file.

The challenge-response protocol also provides a liveness check: an alarm is
raised if a response is not received. This is an example of a specialized monitor
that can help ensure that other monitors are alive and working. (Note that
a successful subversion of this protocol is highly likely to be detected by the
IDS subsystem.)

5 Examples of combination

We now describe examples of various kinds of runtime monitor combinations.

Code annotation and process monitoring: A common approach to ver-
ifying program execution at runtime is source code annotation. This is most
applicable to properties that are easily expressed in the source language and
in the context of the program design, such as simple assertions, and temporal
properties that can be expressed with a few auxiliary variables.

Embedding the runtime verification into the program itself allows close
and accurate monitoring, but does not give any assurance that the properties
hold for the system as a whole unless there are guarantees that the annotated
source is actually running. Verifying this is nontrivial when general-purpose
operating systems are used and security compromises are possible. However,
mechanisms to catch such violations do exist, such as those used in host-based
intrusion detection systems. Operating system processes can be monitored so
that it is difficult for an intruder (or a fault) to stop or kill a program without

121

Levy, Säıdi and Uribe

being detected.

Let P1 be the source code consistency property, and P2 be the system
property that states that the application program is running. In this example,
the code annotation monitor MA is complete with respect to the internal
property P1, but not with respect to the system-level property P1 ∧ P2, since
MA cannot guarantee P2. Thus, we need a complementary combination of
monitors that will catch violations of a more global system property.

Such a combination is used in the DIT proxy design. Code annotations
check assertions about variables and monitor the execution of the request-
handling threads, while a separate monitor ME is used to verify uninterrupted
execution of the entire multithreaded process. The latter monitor accesses
fairly tamper-resistant kernel information via the /proc filesystem mecha-
nism present in many Unix-type operating systems. A formalization of this
argument is

[true] MA [P1] , [true] ME [P2]

[true] (MA ⊕ME) [P1 ∧ P2]

In addition, we use StackGuard [4] to ensure that no buffer overflows occur
in the proxy code. This can be seen as a third complementary monitor.

Note that MA and ME observe different sets of state variables. MA checks
properties of application software variables, such as source code variables and
execution stack, while ME monitors the operating system’s state. This illus-
trates how checking a property that relates many kinds of state variables is
made easier by decomposing it into subproperties that each concern a more
restricted set of variables, for which monitors are easier to build.

Counting connections: As an example of correlation between monitors,
consider a server program that accepts client connections from the network and
supplies responses. If the machine running the program is a dedicated server,
then the number of network connections to the machine should equal the
number of clients being serviced by the program. A violation would indicate
a bug in the server software or an unauthorized connection.

To accurately monitor the number of requests being serviced, we need a
monitor for the server software, which is obtained by annotating the code. To
count the number of actual client connections for the whole system, we need
an operating system-based monitor. Finally, a third monitor takes input from
the first two and checks that they agree.

We are currently incorporating such a monitor into the DIT proxy, using
/proc to supply system connection information, as mentioned in the previous
example.

The number of connections to the server process could also be counted from
the outside, without altering the program; our approach has the advantage
of being able to verify additional properties such as, for instance, that valid
responses are being sent for each connection.

122

Levy, Säıdi and Uribe

Resource and performance monitoring: A more general example of cor-
relation concerns verification of properties that relate resource use and perfor-
mance. Performance and resource use may each be monitored independently,
most likely using different mechanisms. But properties that involve both types
of information are also useful. Given a simple server application where client
requests are expected to have approximately equal cost, we may want to check
that memory and CPU usage are proportional to the number of currently con-
nected clients. Violation of this property could indicate a memory leak, a bug
in the server operation, or a client that is exceeding anticipated or acceptable
resource allocations.

Combining monitors for network security: Combinations of monitors
need not be limited, of course, to systems consisting of a single machine. A
networked collection of computers can be monitored, with monitors verifying
the state and operation of various platforms, the network, and their combined
operation. While the quantity of information flow and the level of trust in
communications are usually more limited in a network than between soft-
ware components on a single computer, the necessity for effectively combining
separate monitors is even greater, since different mechanisms are required to
monitor different platforms and the network itself.

Network intrusion detection systems that check for possible violations of
security in networked systems are already common [19]. Since they are de-
signed for general-purpose networks and because of the volume and complexity
of general network data, network IDSs do not verify most aspects of network
operation, but instead focus on particular violations, such as the presence of
packets containing known attacks, or particular types and sequences of pack-
ets. However, in applications where verification of stronger network security
properties is desired, network monitoring can be combined with other types
of monitors for increased accuracy.

As a simple illustration, consider a database, behind a firewall, accessible
via an authenticating web server. Monitoring internal network connections
to the database becomes more effective if the monitor is aware of the user
associated with each request, and when users log on and log off using the
authentication mechanism. By verifying that queries follow login and precede
logoff, many requests that arise from penetration or circumvention of the
firewall would be caught.

Checking request forwarding in the DIT system: Finally, let us sketch
how, in the DIT system design, monitors combine to verify a key property P :

P : The proxy sends client requests to a correct set of application servers.

The proxy server program maintains two key internal values: (i) the list
of servers that are considered uncompromised, and hence may be queried,
and (ii) the current regime, which determines the number of uncompromised
servers that should be queried for each client request. P means that a request

123

Levy, Säıdi and Uribe

Fig. 5. Information flow for DIT monitors

is sent to the proper number of distinct application servers that are considered
to be uncompromised, or is not sent at all if there are not enough such servers.
The property P can be expressed in terms of several other properties:

P1: The proxy server is running.

P2: Each regime transition is allowable, according to a design specification.

P3: The current regime is actually followed (i.e., the proxy sends a number
of requests equal to what is specified in the current regime).

P4: Servers considered compromised are never queried.

Together, P1–P4 imply P (assuming that the regime at system startup is
correct).

Property P1 is verified by the OS-based /proc monitor ME described ear-
lier. The interface to the alert manager allows regime transitions to be moni-
tored, using an interface monitor MI , which works as long as the proxy server
is running. MI is able to verify P2 by checking each transition against a spec-
ification that describes when regimes are allowed to change. The specification
states how the regime is increased when disagreement is observed, and how the
regime can be decreased if the number of uncompromised servers drops below
the number needed by the regime. The events that trigger the transitions are
observable on the interface.

To verify that the number of requests actually matches the current regime,
a network monitor MN , running on a separate machine connected to the inter-
nal network, sniffs traffic to see which application servers are the recipients of
each forwarded request. The monitor compares this with the current regime
and the current list of uncompromised servers, which it receives in network
messages from MI . (MN also detects the absence of such messages.) Thus MN

verifies both P3 and P4.

The relevant types of system variables monitored in this example are

(i) OS variables on the proxy (/proc)

(ii) Application software variables (proxy code)

(iii) Protocol status variables (current regime and current list of uncompro-
mised servers)

(iv) Network variables (packets being sent, their sources and destinations)

124

Levy, Säıdi and Uribe

P1 concerns the first set of system variables, P2 concerns the second, and P3

and P4 both concern the last two.

To summarize, Figure 5 shows schematically the information flow between
the three monitors. The formal argument to show that the three monitors
combine to verify P is

P1 ∧ P2 ∧ P3 ∧ P4 → P,

[true] MN [P3 ∧ P4] ,

[true] ME [P1] , [P1] MI [P2]

[true] (ME ⊕MI) [P1 ∧ P2]

[true] (ME ⊕MI ⊕MN) [P1 ∧ P2 ∧ P3 ∧ P4]

[true] (ME ⊕MI ⊕MN) [P]

Of course, there remains the task of ensuring that the three monitors will
not be disrupted, which in this case we assume will be established by other
formal or informal arguments.

6 Conclusions

We have argued that in practical systems, runtime monitors at different levels
of operation must be combined. The design of the system, and the choice of
monitoring levels and mechanisms, should take the effect of monitor combina-
tion into account. The advantages of combining monitors can be summarized
as follows:

(i) Additional monitors can cover missing properties, such as unchecked as-
sumptions (cooperation)

(ii) By sharing information, stronger properties can be monitored (correla-
tion)

(iii) Greater efficiency and modularity in the monitoring mechanism

There are many practical challenges to the effective implementation and
combination of monitors. For instance, it would be desirable to have a secure
kernel module that supports the exchange of information between monitors
implemented at different levels of abstraction.

6.1 Related Work

The combination of runtime monitors has not been addressed in previous
work, though much work has been done to develop and test individual moni-
toring mechanisms. We mention a few that are relevant to the techniques and
applications we have discussed.

Intrusion detection can be seen as an important class of runtime monitoring
and verification, particularly in the case of specification-based IDS [12,13].
Given a specification of potential intrusions, design-time verification can help
identify security vulnerability and exploits as well.

125

Levy, Säıdi and Uribe

The lack of type safety in C programs leads to notorious security flaws,
such as buffer overflows, as exploited by the Code Red worm [18]. Several tools
address the need for checking type safety properties of C and C++ programs
at runtime. The CCured type system [17] uses a combination of static and
runtime pointer analysis to catch type errors. Cyclone [10] is a more strongly
typed dialect of C that inserts additional runtime checks. StackGuard [4] is a
compiler security mechanism that catches many buffer overflow attacks (which
we use for the proxy compilation).

The MaC language [15,11] provides a formal language for describing mon-
itors and automatic tools for instrumenting code. The Alamo monitor archi-
tecture [9,8] instruments C code in more detail, resulting in less efficient code.
Techniques for instrumenting C and C++ code and analyzing the results are
presented in [14].

Future work: Our formal framework may be extended to explicitly include
abstraction layers, including abstraction and refinement relations between
variables, components, and monitors. The assume-guarantee proof notation
can be similarly extended.

We have not discussed design issues, such as how a designer knows what
monitors to use and how they should be assembled. However, this approach
to runtime verification may nicely complement design methodologies that in-
clude design-time verification as well. Off-line verification and analysis could
be applied as thoroughly as possible, and runtime monitors could then be
chosen and assembled to check all remaining critical properties. The choice of
monitors can also follow the design assurance argument , which describes why
the architecture meets the desired operational and security requirements [5].

As we noted in Section 2, some important security properties are not sets of
traces [25,20]. Hence, runtime checks alone cannot guarantee these properties.
Runtime verification must be combined with design-time analysis to ensure
such properties.

Another direction for future work concerns extending our framework to
include property enforcement , as done by the security automata of [21]; our
current focus is on detecting safety property violations.

Finally, another challenge is to extend our framework to include real-time
properties and monitors, with access to a global or local system clocks. Real-
time constraints allow expressing many untimed progress properties as timed
safety properties, which can therefore be monitored.

Acknowledgement

We thank Magnus Almgren, Nikolaj Bjørner, Steven Cheung, Yves Deswarte,
Bruno Dutertre, and Alfonso Valdes for their comments and feedback.

126

Levy, Säıdi and Uribe

References

[1] Abadi, M. and L. Lamport, Composing specifications, ACM Transactions on
Programming Languages and Systems 14 (1992), pp. 1–60.

[2] Alpern, B. and F. B. Schneider, Recognizing safety and liveness, Distributed
Comp. 2 (1987), pp. 117–126.

[3] Ben-Ari, M., Z. Manna and A. Pnueli, The temporal logic of branching time,
Acta Informatica 20 (1983), pp. 207–226.

[4] Cowan, C., C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang and H. Hinton, StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks, in: Proc. 7th USENIX Security
Conference, 1998, pp. 63–78.

[5] Dawson, S., J. Levy, R. Riemenschneider, H. Säıdi, V. Stavridou and A. Valdes,
Design assurance arguments for intrusion tolerance, in: Workshop on Intrusion
Tolerant Systems, DSN 2002, 2002, pp. C–8–1 – C–8–5.

[6] Emerson, E. A. and J. Y. Halpern, ‘Sometimes’ and ‘not never’ revisited: On
branching time versus linear time, Journal of the ACM 33 (1986), pp. 151–178.

[7] Geilen, M., On the construction of monitors for temporal logic properties,
Electronic Notes in Theoretical Computer Science 55 (2001), RV’01—First
Workshop on Runtime Verification.

[8] Jeffery, C., The Alamo execution monitor architecture, Electronic Notes in
Theoretical Computer Science 30 (2000).

[9] Jeffery, C. L., W. Zhou, K. Templer and M. Brazell, A lightweight architecture
for program execution monitoring, in: ACM SIGPLAN Workshop on Program
Analysis for Software Tools and Engineering, 1998, pp. 67–74.

[10] Jim, T., G. Morrisett, D. Grossman, M. Hicks, J. Cheney and Y. Wang, Cyclone:
A safe dialect of C, in: USENIX Annual Technical Conference, 2002.

[11] Kim, M., “Information Extraction for Run-time Formal Analysis,” Ph.D. thesis,
CIS Dept. Univ. of Pennsylvania (2001).

[12] Ko, C., “Execution Monitoring of Security Critical Programs in a Distributed
System: A Specification-Based Approach,” Ph.D. thesis, Computer Science,
University of California at Davis (1996).

[13] Ko, C., M. Ruschitzka and K. Levitt, Execution monitoring of security critical
programs in distributed systems: A specification-based approach, in: IEEE
Symposium on Security and Privacy, 1997, pp. 175–187.

[14] Kortenkamp, D., T. Milam, R. Simmons and J. L. Fernandez, Collecting
and analyzing data from distributed control programs, Electronic Notes in
Theoretical Computer Science 55 (2001), RV’01—First Workshop on Runtime
Verification.

127

Levy, Säıdi and Uribe

[15] Lee, I., S. Kannan, M. Kim, O. Sokolsky and M. Viswanathan, Runtime
assurance based on formal specifications, in: International Conference on
Parallel and Distributed Processing Techniques and Applications, 1999.

[16] Manna, Z. and A. Pnueli., Temporal verification diagrams, in: International
Symposium on Theoretical Aspects of Computer Software (TACS’94), LNCS
789 (1994), pp. 726–765.

[17] Necula, G. C., S. McPeak and W. Weimer, CCured: Type-safe retrofitting of
legacy code, in: Principles of Programming Languages (2002).

[18] Permeh, R. and M. Maiffret, .ida “Code Red” worm, Security Advisory
AL20010717, eEye Digital Security (2001), http://www.eeye.com/html/
Research/Advisories/AL20010717.html.

[19] Porras, P. and P. Neumann, EMERALD: Event monitoring enabling responses
to anomalous live disturbances, in: Proceedings of the 20th National Information
Systems Security Conference, Baltimore, MD, 1997, pp. 353–365.

[20] Rushby, J., Security requirements specifications: How and what?, in: Symposium
on Requirements Engineering for Information Security (SREIS), Indianapolis,
IN, 2001.

[21] Schneider, F. B., Enforceable security policies, Information and System Security
3 (2000), pp. 30–50.

[22] Valdes, A., M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy,
H. Säıdi, V. Stavridou and T. E. Uribe, An adaptive intrusion-tolerant server
architecture, Technical report, System Design Laboratory, SRI International,
CA (2001).

[23] Viswanathan, M., “Foundations for the Run-time Analysis of Software
Systems,” Ph.D. thesis, Computer and Information Science, University of
Pennsylvania (2000).

[24] Wagner, D. and D. Dean, Intrusion detection via static analysis, in: IEEE
Symposium on Security and Privacy, 2001, pp. 156–169.

[25] Zakinthinos, A., “On the Composition of Security Properties,” Ph.D. thesis,
Department of Electrical and Computer Engineering, University of Toronto
(1996).

128

http://www.eeye.com/html/Research/Advisories/AL20010717.html�
http://www.eeye.com/html/Research/Advisories/AL20010717.html�

